tứ diện đều là gì

Bách khoa toàn thư cởi Wikipedia

Hình tứ diện

Trong hình học tập không khí, tứ diện (tiếng Anh: Tetrahedron) hoặc hình chóp tam giác là 1 trong khối nhiều diện bao gồm sở hữu tư mặt mày là những hình tam giác, 6 cạnh và 4 đỉnh. Tứ diện cũng chính là hình nhiều diện lồi giản dị và đơn giản nhất, và là nhiều diện có một không hai sở hữu thấp hơn 5 mặt mày.[1]

Bạn đang xem: tứ diện đều là gì

Tứ diện về thực chất là 1 trong dạng của hình chóp - tức là 1 trong hình nhiều diện sở hữu lòng là 1 trong nhiều giác bên trên mặt mày bằng phẳng và sở hữu một đỉnh nối với toàn bộ những đỉnh của nhiều giác đang được mang lại. Trong tình huống của tứ diện, lòng này của chính nó cũng chính là hình tam giác. Cũng tương tự từng hình nhiều diện lồi không giống, tứ diện rất có thể được tạo ra trở nên chỉ bằng phương pháp vội vàng một bạn dạng dựng mang lại trước.

Với từng tứ diện, tớ luôn luôn sở hữu một phía cầu nước ngoài tiếp tứ diện cơ (đi qua loa cả 4 đỉnh của tứ diện) và một phía cầu nội tiếp tứ diện đang được mang lại (tiếp xúc đối với tất cả 4 mặt mày của tứ diện)[2].

Tứ diện đều[sửa | sửa mã nguồn]

Một tứ diện đều (tiếng Anh: Regular tetrahedron) là tứ diện sở hữu cả tư mặt mày của chính nó là tam giác đều, kể từ cơ đơn giản dễ dàng suy rời khỏi nhì tính chất:

  • Tất cả những mặt mày của tứ diện túc tắc là những tam giác đều cân nhau.
  • Tất cả những cạnh của tứ diện đều cân nhau.

Tứ diện đều là 1 trong vô 5 khối nhiều diện đều Platon và được biết tới từ lâu.

Các công thức[sửa | sửa mã nguồn]

Các công thức sau đây được dùng mang lại tứ diện đều cạnh a:

Tứ diện đều ABCD nội tiếp đàng tròn trặn tâm O.
Diện tích mặt mày bên
Diện tích toàn phần
Độ nhiều năm đàng cao
Khoảng cơ hội kể từ trọng tâm tứ diện cho tới đỉnh
Khoảng cơ hội thân thuộc nhì cạnh chéo cánh nhau
Thể tích
Góc thân thuộc cạnh và mặt mày bằng phẳng ko chứa chấp cạnh đó
(Xấp xỉ 54,7356 độ)
Góc nhị diện
(Xấp xỉ 70,5288 độ)
Góc thân thuộc hai tuyến phố trực tiếp nối trọng tâm của tứ diện cho tới nhì đỉnh bất kì
(Xấp xỉ 109,4712 độ)
Góc khối
Bán kính mặt mày cầu nước ngoài tiếp tứ diện
Bán kính mặt mày cầu nội tiếp tứ diện
Bán kính mặt mày cầu bàng tiếp tứ diện

Ký hiệu[sửa | sửa mã nguồn]

Hình động của khối tứ diện

Tứ diện sở hữu tư đỉnh A, B, C, D thông thường được ký hiệu là (ABCD). Bất kì điểm này vô số A, B, C, D cũng rất có thể được xem là đỉnh; còn mặt mày tam giác đối lập với nó được gọi là lòng. Chẳng hạn, nếu lọc A là đỉnh thì (BCD) là mặt mày lòng.

Xem thêm: các rank trong liên quân

  • Đường cao của tứ diện là 1 trong vô tư đoạn trực tiếp hạ vuông góc từ 1 đỉnh xuống mặt mày lòng.
  • Thể tích của tứ diện rất có thể được xem như so với hình chóp, vì chưng một trong những phần tía tích đàng cao và diện tích S mặt mày lòng.

Các công thức của tứ diện[sửa | sửa mã nguồn]

Cho tứ diện ABCD sở hữu BC = a, AC = b, AB = c, AD = d, BD = e, CD = f và thể tích V.

  • Công thức tính thể tích tứ diện theo đuổi 6 cạnh:

Công thức Euler.

  • Công thức tính góc thân thuộc 2 cạnh đối:

  • Khoảng cơ hội thân thuộc 2 đàng chéo cánh nhau:

  • Công thức tính góc nhị diện: Gọi S1, S2 thứu tự là diện tích S nhì tam giác BCD, ACD. Ta có:

Xem thêm: d78 gồm những môn nào

  • Công thức xác lập đàng vuông góc chung:

Đường vuông góc cộng đồng của AB và CD hạn chế AB bên trên I. Đặt . Khi đó:

  • Thể tích V của tứ diện SABC sở hữu SA = a, SB = b, SC = c và những góc :

Tham khảo[sửa | sửa mã nguồn]

  1. ^ Weisstein, Eric W. “Tetrahedron”. mathworld.wolfram.com (bằng giờ Anh). Truy cập ngày 11 mon 11 năm 2022.
  2. ^ Ford, Walter Burton; Ammerman, Charles; Hedrick, Earle Raymond (1923). Plane and solid geometry. Harvard University. Thành Phố New York, The Macmillan company.
Wikimedia Commons nhận thêm hình hình ảnh và phương tiện đi lại truyền đạt về Tứ diện.